

5 Common Hibernate Exceptions

www.thoughts-on-java.org

LazyInitializationException
Hibernate throws a LazyInitializationException if you try to access a
not initialized relationship to another entity without an active
session.

The best way to fix it is to initialize the required relationship with a
@NamedEntityGraph.

You can then provide the graph as a hint to define which
relationships shall be initialized with a given query.

@NamedEntityGraph(name = "graph.AuthorBooks",

 attributeNodes = @NamedAttributeNode("books"))

EntityGraph<?> graph =

em.getEntityGraph("graph.AuthorBooks");

HashMap<String, Object> properties = new HashMap<>();

properties.put("javax.persistence.fetchgraph", graph);

Author a = em.find(Author.class, 1L, properties);

http://www.thoughts-on-java.org/

5 Common Hibernate Exceptions

www.thoughts-on-java.org

OptimisticLockException
Hibernate throws an OptimisticLockException when you use
optimistic locking and it detects a conflicting update of an entity.
That most often happens for one of two reasons:

1. 2 users try to update the same entity at nearly the same point in
time.

You can’t do much to avoid this without introducing pessimistic
locking which would sacrifice the performance of your
application. Just try to update the entity representations in the
client as often as possible and to keep the update operations as
short as possible.

2. 1 user performs 2 updates of the same entity, and you didn’t
refresh the entity representation in the client so that the
version value wasn’t updated after the first update.

This one is a bug. You need to make sure that your client always
updates its representation of the entity after the user triggered
any change on the entity. And your client application should
also not cache the entity or any value object representing it.

http://www.thoughts-on-java.org/

5 Common Hibernate Exceptions

www.thoughts-on-java.org

org.hibernate.AnnotationException: Unknown Id.generator
This one is caused by a missing @SequenceGenerator annotation
which allows you to provide additional information about the
sequence Hibernate shall use.

QuerySyntaxException: Table is not mapped
The most common reason for this Exception is that the default table
name for an entity doesn’t match the database table name. You can
fix it with a @Table annotation and specify the table and schema
name.

@Id

@GeneratedValue(strategy = GenerationType.SEQUENCE,

generator = "authorSequence")

@SequenceGenerator(name = "authorSequence",

sequenceName = "author_seq",

initialValue = 1000)

@Column(name = "id", updatable = false, nullable = false)

private Long id;

@Entity

@Table(name = "author", schema = "bookstore")

public class Author implements Serializable {

 …

}

http://www.thoughts-on-java.org/

5 Common Hibernate Exceptions

www.thoughts-on-java.org

org.hibernate.PersistentObjectException: detached entity
passed to persist
This Exception can have multiple reasons and all of them are bugs:

1. You try to persist a new entity and provide a primary key value,
but the entity mapping defines a strategy to generate it.

This one is easy to fix, don’t provide a primary key value or
remove the primary key generation strategy ;)

2. You try to persist a new entity and the persistence context
already contains an entity with the given id.

This one should only occur if you manage the primary key
values yourself, and your algorithm creates duplicates. My
preferred approach to fixing this issue is to let Hibernate use a
database sequence to generate the primary key values instead
of implementing my own algorithm. But that’s not always
possible and in these cases, you have to test and debug the
algorithm you use to generate the primary key values.

3. You try to persist a detached entity instead of merging it.

And this one often happens, when you use entities in your
client, and the client calls the wrong server method which
persists new entities instead of updating the existing ones. The
obvious way to fix this error is to fix the call in the client.

4.
But there are also a few things you can do on the server side to
avoid these kinds of issues, like using specific value objects for
create use cases and not handling create and update use cases
in the same server method. This makes it easier for the client
developer to find and call the right method and to avoid these
kinds of issues.

http://www.thoughts-on-java.org/

